Optimal Reconfiguration for Supply Restoration With Informed A* Search
نویسندگان
چکیده
Reconfiguration of radial distribution networks is the basis of supply restoration after faults and of load balancing and loss minimization. The ability to automatically reconfigure the network quickly and efficiently is a key feature of autonomous and self-healing networks, an important part of the future vision of Smart Grids. We address the reconfiguration problem for outage recovery, where the cost of the switching actions dominates the overall cost: when the network reverts to its normal configuration relatively quickly, the electricity loss and the load imbalance in a temporary suboptimal configuration are of minor importance. Finding optimal feeder configurations under most optimality criteria is a difficult optimization problem. All known complete optimal algorithms require an exponential time in the network size in the worst case, and cannot be guaranteed to scale up to arbitrarily large networks. Hence most works on reconfiguration use heuristic approaches that can deliver solutions but cannot guarantee optimality. These approaches include local search, such as tabu search, and evolutionary algorithms. We propose using optimal informed search algorithms in the A* family, introduce admissible heuristics for reconfiguration, and demonstrate empirically the efficiency of our approach. Combining A* with admissible cost lower bounds guarantees that reconfiguration plans are optimal in terms of switching action costs.
منابع مشابه
Novel Hybrid Fuzzy-Intelligent Water Drops Approach for Optimal Feeder Multi Objective Reconfiguration by Considering Multiple-Distributed Generation
This paper presents a new hybrid method for optimal multi-objective reconfiguration in a distribution feeder in addition to determining the optimal size and location of multiple-Distributed Generation (DG). The purposes of this research are mitigation of losses, improving the voltage profile and equalizing the feeder load balancing in distribution systems. To reduce the search space, the improv...
متن کاملOptimal reconfiguration of radial distribution system with the aim of reducing losses and improving voltage profiles using the improved lightning search algorithm
In this paper, a modified version of the lightning search algorithm is proposed in order to find the optimal reconfiguration of the switches and locate and determine the optimal capacity of distributed generation sources in the distribution feeder. The main optimization goals are to reduce ohmic losses and voltage deviations in the standard 33-bus and 94-node IEEE feeders. The simulation result...
متن کاملA SAIWD-Based Approach for Simultaneous Reconfiguration and Optimal Siting and Sizing of Wind Turbines and DVR units in Distribution Systems
In this paper, a combination of simulated annealing (SA) and intelligent water drops (IWD) algorithm is used to solve the nonlinear/complex problem of simultaneous reconfiguration with optimal allocation (size and location) of wind turbine (WT) as a distributed generation (DG) and dynamic voltage restorer (DVR) as a distributed flexible AC transmission systems (DFACT) unit in a distribution sys...
متن کاملA Novel Reconfiguration Mixed with Distributed Generation Planning via Considering Voltage Stability Margin
In recent years, in Iran and other countries the power systems are going to move toward creating a competition structure for selling and buying electrical energy. These changes and the numerous advantages of DGs have made more incentives to use these kinds of generators than before. Therefore, it is necessary to study all aspects of DGs, such as size selection and optimal placement and impact o...
متن کاملFeeder Load Balancing Using Neural Network
The distribution system problems, such as planning, loss minimization, and energy restoration, usually involve the phase balancing or network reconfiguration procedures. The determination of an optimal phase balance is, in general, a combinatorial optimization problem. This paper proposes optimal reconfiguration of the phase balancing using the neural network, to switch on and off the different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Smart Grid
دوره 3 شماره
صفحات -
تاریخ انتشار 2012